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What is meant by the area under a curve, and how can its
value be found?



Here are some examples.

(a) f (x) = constant (b) f (x) = 1
2x + 1 (c) f (x) = x2

Figure: Areas under a Curve, from x = A to x = B

In all of the above cases, we consider the area under the graph of a
function, over the x-axis, and between the vertical lines x = a and
x = b.

The third case takes us into unknown territory. How should we
proceed?



Suppose that f (x) is a polynomial with the property that f (x) ≥ 0
on the interval [a, b]. Let F[a,b] be the area under the graph of
f (x), over the x-axis, and between the vertical lines x = a and
x = b.

Exercise: Suppose f (x) = c is constant on the interval [a, b].
Express F[a,b] in terms of a, b, and c .



If f (x) is approximately constant on the interval [a, b], then F[a,b]

is approximately equal to (b − a)c.

Figure: The area on the left can be approximated by the area on the right



Since the values of polynomials change only gradually, a
polynomial is approximately constant on a small interval. So, given
a polynomial f (x) and an interval [a, b], we may divide the interval
[a, b] into smaller subintervals on which f (x) is approximately
constant. We can then approximate F[a,b] by the areas of
rectangles whose bases are the subintervals of [a, b] and whose
height is determined by f (x).



Figure: Suppose f (x) = x2. We’ll use k = 4 rectangles to approximate
F[3,5], shown in the picture above.



F[3,5] = F 1
[3,5] + F 2

[3,5] + F 3
[3,5] + F 4

[3,5], as illustrated by the following
picture.

Figure: The areas on the left and the right both equal F[3,5]

Here F n
[a,b] = F[a+(n−1)∆,a+n∆] is a slice, where ∆ = b−a

k and k is
the number of subintervals.



(a) F 1
[3,5] (b) F 2

[3,5] (c) F 3
[3,5] (d) F 4

[3,5]

Figure: The area F[3,5] = F 1
[3,5] + F 2

[3,5] + F 3
[3,5] + F 4

[3,5]



We now have to choose a method by which to approximate the
area of each slice. We’ll use what’s called the Left Hand Rule. In
other words, we’ll approximate each slice by a rectangle whose
height is given by the value of f (x) at the left hand endpoint of
the appropriate subinterval.

Figure: On the left, a slice. On the right, its left hand rule approximation.



Figure: The left hand rule approximation of F[3,5]

F[3,5] = F 1
[3,5] + F 2

[3,5] + F 3
[3,5] + F 4

[3,5] ≈

1
2 × f (3) + 1

2 × f (3.5) + 1
2 × f (4) + 1

2 × f (4.5)

= 9+12.25+16+20.25
2 = 28.75.



To build our left hand rectangles we made the height equal to the
value of the function at the left end of each interval, but we did
not have to choose the left endpoint. In fact we could have chosen
any point in the interval. If instead we choose the right endpoint
of each interval, this is the Right Hand Rule.



Let’s redo the above example using the Right Hand Rule:

F[3,5] = F 1
[3,5] + F 2

[3,5] + F 3
[3,5] + F 4

[3,5]

≈ 1
2 × f (3.5) + 1

2 × f (4) + 1
2 × f (4.5) + 1

2 × f (5)

= 1
2 [12.25 + 16 + 20.25 + 25] = 36.75.

This method of approximating the area under the curve as a sum
of the areas of simpler regions lying over subintervals is called a
Riemann Sum.



Exercise 1 Let f (x) = 1 + 1
2x and let k = 9. Sketch F 3

[2,5]. Then

estimate the value of F 3
[2,5], using first the Left Hand Rule and then

the Right Hand Rule.

Exercise 2 Approximate F[0,6], where f (x) = 5. Use 3 rectangles
and both the Left and Right Hand Rules.

Exercise 3 Approximate G[1,2], where g(x) = x . Use 4 rectangles
and the Right Hand Rule.

Exercise 4 Approximate H[−2,3], where h(x) = x2 + 1. Use 5
rectangles and the Left Hand Rule.



There are other types of Riemann sum. One could use rectangles
whose heights are determined by the value of the function at the
midpoints of each of the subintervals. This is called the Midpoint
Rule. For example, if f (x) = x2, then the Midpoint Rule Riemann
sum with two subintervals which approximates F[1,2] is

F[1,2] ≈ 1
2 · 1.252 + 1

2 · 1.752.

Exercise 5 Approximate J[1,5], where j(x) = x3 − x . Use 2
rectangles and the Midpoint Rule.



The Trapezoid Rule uses trapezoids instead of rectangles. So, for
example, if f (x) = x2, then the Trapezoid Rule Riemann sum with
two subintervals which approximates F[1,2] is

F[1,2] ≈ 1
2 · 12+1.52

2 + 1
2 · 1.52+22

2 .

Exercise 6 Approximate K[2,4], where k(x) = 2x2 + x . Use four
subintervals and the trapezoid rule.



Let f (x) = x and suppose that n is a positive integer.

What is the (Right Hand Rule) Riemann Sum approximation of
F[0,1] with n rectangles?



The (Right Hand Rule) Riemann Sum approximation of F[0,1] with
n rectangles, where f (x) = x and n ≥ 1, is

F[0,1] ≈
1

n
·1
n

+
1

n
·2
n

+
1

n
·3
n

+· · ·+ 1

n
·n
n

=
1

n2
[1+2+3+· · ·+n] =

1

n2

n∑
k=1

k .



So far, we’ve managed to approximate the area under a curve. Is
there any way to find the exact value of the area? Unsurprisingly,
the answer is yes!



Once again, let f (x) = x . We’ll use Riemann sums to find the
exact value of F[0,1]. The Right Hand Rule Riemann sum
approximation of F[0,1] with n rectangles is

F[0,1] ≈ 1
n2 (1 + 2 + · · · + n) = 1

n2 · n(n+1)
2 = n(n+1)

2n2 .

The Riemann sum above better approximates F[0,1] as n increases.
Note that

n(n+1)
2n2 = n2+n

2n2 = 1
2 + 1

2n ,

which is just a transformation of y = 1
n .



That means the graph of our Riemann Sum vs. n, the number of
rectangles, will have the horizontal asymptote y = 1

2 . Consider its
graph:

Figure: The right hand rule approximation of the area under y = x on the
interval [0, 1], as a function of the number of rectangles

Clearly, F[0,1] = lim
n→∞

n(n + 1)

2n2
=

1

2
.



Postulates of Area under a Curve

We have not yet discussed F[a,b] for polynomials f(x) which are
negative somewhere on the interval [a, b]. Here’s the first step:

Postulate 1: Suppose that f (x) ≤ 0 on the interval [a, b], and let
g(x) = −f (x). Then F[a,b] = −G[a,b].

Why does this postulate makes sense?

Suppose that c is a real number between a and b.

Postulate 2: F[a,b] = F[a,c] + F[c,b].

Why does this postulate makes sense?



Example Consider f (x) = x − x3 on the interval [0, 2]. f (x) ≥ 0
on [0, 1] and f (x) ≤ 0 on [1, 2].

Figure: f (x) = x − x3, shaded on the interval [0, 2]

By Postulate 2 we can break this area up into two regions: from 0
to 1 and from 1 to 2. This gives us F[0,2] = F[0,1] + F[1,2].



Let g(x) = −f (x). By Postulate 1 we have F[1,2] = −G[1,2].

Thus, F[0,2] = F[0,1] − G[1,2] = F[0,1] −
∣∣F[1,2]

∣∣
In other words, the area under the curve, known as the algebraic
area or signed area, is the positive area above the x-axis minus the
positive area below the x-axis.



Exercise From the picture above, will F[0,2] be positive or
negative? Express the shaded area, which is not F[0,2], in terms of
F[0,1] and F[1,2].



Postulate 3: F[a,b] = −F[b,a].

Why does this postulate makes sense?

If f (x) = c is constant, and b < a, then what is the value of F[a,b]?



Accumulation Functions

Given a function f (x), we can construct a new function F (x) from
the area under the graph of f (x), as follows. Consider the function
y = f (t) and, for some fixed value a, define F (x) by F (x) = F[a,x].
In other words, F (x) is the area under the graph of f (t), from
t = a to t = x .

Figure: F (x) = the area under f (t), from t = a to t = x



Example 1

If f (t) = 2 and a = 1, then F (x) = F[1,x] = (x − 1) · 2 = 2x − 2.

Figure: The area on the left is graphed, as a function of x , on the right



Example 2 If f (t) = t + 1, a = 1, then

F (x) = 1
2 (2 + x + 1)(x − 1) = 1

2 (x2 + 2x − 3) = 1
2 (x − 1)(x + 3)

Figure: The area on the left is graphed, as a function of x , on the right



Example 3

If f (t) = t + 1, a = −1, then F (x) = 1
2 (x + 1)(x + 1) = 1

2 (x + 1)2.

Figure: The area on the left is graphed, as a function of x , on the right



Example 4 If f (t) = t + 1, a = −3, then

F (x) = 1
2 (x+1)(x+1)− 1

2 (2)(2) = 1
2 (x2+2x−3) = 1

2 (x−1)(x+3).

Figure: The area on the left is graphed, as a function of x , on the right
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